Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Ther Oncolytics ; 26: 135-140, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1946184

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has produced a new global challenge for patients with cancer. The disease and the immunosuppression induced by cancer therapies have generated a perfect storm of conditions to increase the severity of the symptoms and worsen the prognosis. However, a few clinical reports showcased the power of viruses to induce remission in some patients suffering from liquid tumors. Here, we reviewed six cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that resulted in cancer remission, simultaneously highlighting the strengths and the unique challenges of oncolytic virotherapy. Virotherapy has become a special case of cancer immunotherapy. This paradigm-shifting concept suggests that oncolytic viruses are not only promising agents to combat particularly immunologically suppressed, immunotherapy-resistant tumors but also that the trigger of local inflammation, such as SARS-CoV-2 infection of the respiratory pathways, may trigger an abscopal effect sufficient to induce the remission of systemic cancer.

2.
Journal of Virology ; 96(3):14, 2022.
Article in English | Web of Science | ID: covidwho-1755770

ABSTRACT

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.

3.
National Technical Information Service; 2020.
Non-conventional in English | National Technical Information Service | ID: grc-753600

ABSTRACT

Despite some interruptions in workflow and data acquisition due to the COVID pandemic, we made substantial progress this past year towards our aims. We completed most of the studies in aims 1 and 2 to compare our panel of viruses in one (#5NPCIS) of the two tumor models. We found that TVEC had the most ability to replicate in cell lines, but by other parameters the three viruses functioned similarly in their relative lack of therapeutic efficacy as a single agent despite induction of immune cell chemoattractant chemokines and immune cell infiltration. We encountered unforeseen challenges in growing the second model (67C-4), but those have largely been solved and we are now poised to complete aims 1 and 2 using that model in the final year of the project. We also conducted studies in the first model of combinationtherapy as planned in aim 2, but also found no combination efficacy. These results were surprising to us, as the combination has shown activity in other tumors types, including a model of rhabdomyosarcoma which is also an NF-1 related tumor. Again, we will test combination therapy as described in aim 2 in the second model in the coming year of the grant. Finally, we also made progress on aim 3 using virus plus ruxolitinib, and plan to complete those studies in the next reporting period.

4.
J Virol ; 96(3): e0082621, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691430

ABSTRACT

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Subject(s)
Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/physiology , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Host-Pathogen Interactions , Membrane Cofactor Protein/metabolism , Adenoviruses, Human/ultrastructure , Animals , Biomarkers , Blood Cell Count , CHO Cells , Cell Line , Coxsackie and Adenovirus Receptor-Like Membrane Protein/chemistry , Cricetulus , Disease Models, Animal , Gene Expression , Humans , Membrane Cofactor Protein/chemistry , Membrane Cofactor Protein/genetics , Mice, Transgenic , Models, Biological , Models, Molecular , Mutagenesis , Protein Binding , Protein Conformation , Serogroup , Sialic Acids/metabolism , Sialic Acids/pharmacology , Structure-Activity Relationship
5.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1505072

ABSTRACT

BACKGROUND: OH2 is a genetically engineered oncolytic herpes simplex virus type 2 designed to selectively amplify in tumor cells and express granulocyte-macrophage colony-stimulating factor to enhance antitumor immune responses. We investigated the safety, tolerability and antitumor activity of OH2 as single agent or in combination with HX008, an anti-programmed cell death protein 1 antibody, in patients with advanced solid tumors. METHODS: In this multicenter, phase I/II trial, we enrolled patients with standard treatment-refractory advanced solid tumors who have injectable lesions. In phase I, patients received intratumoral injection of OH2 at escalating doses (106, 107 and 108CCID50/mL) as single agent or with fixed-dose HX008. The recommended doses were then expanded in phase II. Primary endpoints were safety and tolerability defined by the maximum-tolerated dose and dose-limiting toxicities (DLTs) in phase I, and antitumor activity assessed per Response Evaluation Criteria in Solid Tumors (RECIST version 1.1) and immune-RECIST in phase II. RESULTS: Between April 17, 2019 and September 22, 2020, 54 patients with metastatic cancers were enrolled. Forty patients were treated with single agent OH2, and 14 with OH2 plus HX008. No DLTs were reported with single agent OH2 in phase I. Four patients, having metastatic mismatch repair-proficient rectal cancer or metastatic esophageal cancer, achieved immune-partial response, with two from the single agent cohort and two from the combination cohort. The duration of response were 11.25+ and 14.03+ months for the two responders treated with single agent OH2, and 1.38+ and 2.56+ months for the two responders in the combination cohort. The most common treatment-related adverse event (TRAE) with single agent OH2 was fever (n=18, 45.0%). All TRAEs were of grade 1-2, except one case of grade 3 fever in the 108CCID50/mL group. No treatment-related serious AEs occurred. Single agent OH2 induced alterations in the tumor microenvironment, with clear increases in CD3+ and CD8+ cell density and programmed death-ligand 1 expression in the patients' post-treatment biopsies relative to baseline. CONCLUSIONS: Intratumoral injection of OH2 was well-tolerated, and demonstrated durable antitumor activity in patients with metastatic esophageal and rectal cancer. Further clinical development of OH2 as single agent or with immune checkpoint inhibitors in selected tumor types is warranted.


Subject(s)
Herpesvirus 2, Human/pathogenicity , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/pathogenicity , Adult , Aged , China , Combined Modality Therapy , Female , Herpesvirus 2, Human/genetics , Herpesvirus 2, Human/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Male , Middle Aged , Neoplasms/immunology , Neoplasms/virology , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Response Evaluation Criteria in Solid Tumors , Time Factors , Treatment Outcome
6.
Pharmaceutics ; 13(10)2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1463785

ABSTRACT

Adenovirus vectors are the most frequently used agents for gene therapy, including oncolytic therapy and vaccine development. It's hard to overestimate the value of adenoviruses during the COVID-19 pandemic as to date four out of four approved viral vector-based SARS-CoV-2 vaccines are developed on adenovirus platform. The vast majority of adenoviral vectors are based on the most studied human adenovirus type 5 (HAdV-C5), however, its immunogenicity often hampers the clinical translation of HAdV-C5 vectors. The search of less seroprevalent adenovirus types led to another species C adenovirus, Adenovirus type 6 (HAdV-C6). HAdV-C6 possesses high oncolytic efficacy against multiple cancer types and remarkable ability to induce the immune response towards carrying antigens. Being genetically very close to HAdV-C5, HAdV-C6 differs from HAdV-C5 in structure of the most abundant capsid protein, hexon. This leads to the ability of HAdV-C6 to evade the uptake by Kupffer cells as well as to distinct opsonization by immunoglobulins and other blood proteins, influencing the overall biodistribution of HAdV-C6 after systemic administration. This review describes the structural features of HAdV-C6, its interaction with liver cells and blood factors, summarizes the previous experiences using HAdV-C6, and provides the rationale behind the use of HAdV-C6 for vaccine and anticancer drugs developments.

SELECTION OF CITATIONS
SEARCH DETAIL